690 research outputs found

    Enhancing quantum entropy in vacuum-based quantum random number generator

    Full text link
    Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number generator. At the same time, it directly determine the extraction ratio of true randomness from the raw data, in other words, it affects quantum random numbers generating rate obviously. In this work, considering the effects of classical noise, the best way to enhance quantum entropy in the vacuum-based quantum random number generator is explored in the optimum dynamical analog-digital converter (ADC) range scenario. The influence of classical noise excursion, which may be intrinsic to a system or deliberately induced by an eavesdropper, on the quantum entropy is derived. We propose enhancing local oscillator intensity rather than electrical gain for noise-independent amplification of quadrature fluctuation of vacuum state. Abundant quantum entropy is extractable from the raw data even when classical noise excursion is large. Experimentally, an extraction ratio of true randomness of 85.3% is achieved by finite enhancement of the local oscillator power when classical noise excursions of the raw data is obvious.Comment: 12 pages,8 figure

    Noise-induced dynamics and photon statistics in bimodal quantum-dot micropillar lasers

    Full text link
    Emission characteristics of quantum-dot micropillar lasers (QDMLs) are located at the intersection of nanophotonics and nonlinear dynamics, which provides an ideal platform for studying the optical interface between classical and quantum systems. In this work, a noise-induced bimodal QDML with orthogonal dual-mode outputs is modeled, and nonlinear dynamics, stochastic mode jumping and quantum statistics with the variation of stochastic noise intensity are investigated. Noise-induced effects lead to the emergence of two intensity bifurcation points for the strong and the weak mode, and the maximum output power of the strong mode becomes larger as the noise intensity increases. The anti-correlation of the two modes reaches the maximum at the second intensity bifurcation point. The dual-mode stochastic jumping frequency and effective bandwidth can exceed 100 GHz and 30 GHz under the noise-induced effect. Moreover, the noise-induced photon correlations of both modes simultaneously exhibit super-thermal bunching effects (g(2)(0)>2g^{(2)}(0)>2) in the low injection current region. The g(2)(0)g^{(2)}(0)-value of the strong mode can reach over 6 in the high injection current region. Photon bunching (g(2)(0)>1g^{(2)}(0)>1) of both modes is observed over a wide range of noise intensities and injection currents. In the presence of the noise-induced effect, the photon number distribution of the strong or the weak mode is a mixture of Bose-Einstein and Poisson distributions. As the noise intensity increases, the photon number distribution of the strong mode is dominated by the Bose-Einstein distribution, and the proportion of the Poisson distribution is increased in the high injection current region, while that of the weak mode is reduced. Our results contribute to the development preparation of super-bunching quantum integrated light sources for improving the spatiotemporal resolution of quantum sensing measurements.Comment: 17 pages, 9 figure

    High-speed photon correlation monitoring of amplified quantum noise by chaos using deep-learning balanced homodyne detection

    Full text link
    Precision experimental determination of photon correlation requires the massive amounts of data and extensive measurement time. We present a technique to monitor second-order photon correlation g(2)(0)g^{(2)}(0) of amplified quantum noise based on wideband balanced homodyne detection and deep-learning acceleration. The quantum noise is effectively amplified by an injection of weak chaotic laser and the g(2)(0)g^{(2)}(0) of the amplified quantum noise is measured with a real-time sample rate of 1.4 GHz. We also exploit a photon correlation convolutional neural network accelerating correlation data using a few quadrature fluctuations to perform a parallel processing of the g(2)(0)g^{(2)}(0) for various chaos injection intensities and effective bandwidths. The deep-learning method accelerates the g(2)(0)g^{(2)}(0) experimental acquisition with a high accuracy, estimating 6107 sets of photon correlation data with a mean square error of 0.002 in 22 seconds and achieving a three orders of magnitude acceleration in data acquisition time. This technique contributes to a high-speed and precision coherence evaluation of entropy source in secure communication and quantum imaging.Comment: 6 pages, 6 figure

    Research methods on the role of financial inclusion, energy efficiency and energy R&D: Evidence from G7 economies

    Get PDF
    Countries around the globe are rapidly targeting energy efficiency goal achievement due to the unproductive and inefficient use of traditional energy sources. Several factors are discovered that are critical for energy efficiency in the region. Still, there are many economic, financial, energy, and research and development factors that could influence energy efficiency and remained ignored in the scholarly research, which is important from economic growth as well as environmental sustainability perspective. This research contributes to the existing literature by providing novel factors affecting energy efficiency in the developed nations. Specifically, the current study investigates the influence of financial inclusion, energy R&D, political- economic-financial risk index, and the energy-related inflation on the energy efficiency of G7 economies covering the period from 2004 to 2020. This study employed the slope heterogeneity and cross-section dependence test, which led to using the second-generation unit root test. For empirical estimations, the current study utilizes the panel Quantile regression, and the outcomes reveal that all the considered variables positively influence the energy efficiency in the region. However, the influence of these variables increases except for the energy-related inflation when moving from lower quantile Q0.25 to medium Q0.50 to higher quantile Q0.75, respectively. The estimated results are found robust, confirmed by the FMOLS estimator. Based on the empirical findings, it is recommended that financial inclusion and energy-related research and development be enhanced to achieve the region’s energy efficiency
    corecore